The necessity of magnesium cation for acid assistance aglycone departure in catalysis by Escherichia coli (lacZ) beta-galactosidase.

نویسندگان

  • M L Sinnott
  • S G Withers
چکیده

1. Removal of Mg2+ from Escherichia coli (lacZ) beta-galactosidase slightly increases the rate of hydrolysis of galactosyl pyridinium salts, but decreases the rate of hydrolysis of arylgalactosides. 2. Fair correlation of logkcat. and log (Km) with the pKa of aglycone is now observed for arglygalactosides, as well as for glycosyl pyridinium salts. 3. Degalactosylation of Mg2+-free enzyme is the rate-limiting step in the hydrolysis of 2,4-dinitrophenyl galactoside. 4. alpha-Deuterium kinetic isotope effects for both sets of substrates are consistent with the rate-determining generation of a glycosyl cation. 5. The pH-independent, SNl hydrolysis of 3,4-dinitrophenyl galactoside has been measured: it is as fast as that of the galactosyl 3-chloropyridinium ion. 6. Hydrolysis of these two substrates by Mg2+-free enzyme proceeds at very similar rates. 7. It is concluded that loss of both types of aglycone takes place, without acid catalysis, from the first ES complex of substrate and apoenzyme. 8. Data for galactosyl azide and thiopicrate confirm that neither charge nor change of atom is the cause of the differences in behavior between aryl galactosides and galactosylpyridinium salts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression Cloning of Recombinant Escherichia coli lacZ Genes Encoding Cytoplasmic and Nuclear P-galactosidase Variants

Objective(s) Nonviral vector can be an attractive alternative to gene delivery in experimental study. In spite of some advantages in comparison with the viral vectors, there are still some limitations for efficiency of gene delivery in nonviral vectors. To determine the effective expression, the recombinant Escherichia coli lacZ genes were cloned into the different variants of pcDNA3.1 and the...

متن کامل

Position of the mutation in beta-galactosidase ochre mutant U118.

The Escherichia coli lacZ ochre mutant strain U118 was converted to an amber mutant and suppressed with supF, which inserts tyrosine. Enzymatically active beta-galactosidase was isolated. It contained tyrosine at residue number 17 instead of glutamic acid as in wild type.

متن کامل

The Escherichia coli flagellar transcriptional activator flhD regulates cell division through induction of the acid response gene cadA.

FlhD is a positive regulator of cadA. A mutant with a transposon-mediated lacZ fusion to cadA exhibited a cell division phenotype similar to that of the flhD mutant and had FlhD-dependent beta-galactosidase activity. Under different growth conditions, the cell division rate correlated with the level of expression of cadA.

متن کامل

Lactose metabolism in Erwinia chrysanthemi.

Wild-type strains of the phytopathogenic enterobacterium Erwinia chrysanthemi are unable to use lactose as a carbon source for growth although they possess a beta-galactosidase activity. Lactose-fermenting derivatives from some wild types, however, can be obtained spontaneously at a frequency of about 5 X 10(-7). All Lac+ derivatives isolated had acquired a constitutive lactose transport system...

متن کامل

The tyrosine repressor negatively regulates aroH expression in Escherichia coli.

The levels of the tryptophan-sensitive isoenzyme of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli, encoded by the aroH gene, were elevated in tyrR and/or trpR mutants. The effect of tyrR and trpR lesions on aroH expression was confirmed by using a lacZ reporter system. The mutational elimination of either repressor led to a threefold increase in beta-galactosidase.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 175 2  شماره 

صفحات  -

تاریخ انتشار 1978